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Asymmetric one-dimensional exclusion processes: A two-parameter exactly solvable example
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We consider a two-parameter family of asymmetric exclusion processes for particles living on a continuous
one-dimensional space. Using the Bethe ansatz, the exact solution to the master equation, and from that the
drift and the diffusion rate in the two particle sector, are obtaif8d063-651X99)09608-7

PACS numbegs): 82.20.Mj, 02.50.Ga, 05.46.a

[. INTRODUCTION space. In this way, one obtains a diffusion equation from
which more compact results can be derived. So this process,
In recent years, the asymmetric exclusion process and the&hich is the continuous version of asymmetric exclusion
problems related to it, including for example the kinetics ofprocess, not only is important by itself, but also gives us
bipolymerization[1], dynamical models of interface growth correct large-time behaviors of discrete processes by simple
[2], traffic models[3], the noisy Burgers equatidel], and  means.
the study of shockEgb,6], have been extensively studied. The  The scheme of the present paper is the following. In Sec.
dynamical properties of this model have been studied ifl, the continuous model is introduced, and compared to its
[6—8]. As the results obtained by approaches like mean fieldliscrete version, and then the evolution matidx the con-
are not reliable in one dimension, it is very useful to intro- ditional probability of the model is obtained using the Bethe
duce solvable models and analytic methods to extract exaeinsatz.
physical results. Among these methods is the coordinate Be- In Sec. Il the two-particle sector of the model is exten-
the ansatz, which was used[®] to derive conditional prob- sively studied. It is shown that the probability distribution of
abilities for the asymmetric simple exclusion procésSEP  the distance between particles is independent of the two pa-
on a one-dimensional lattice. rameters introduced:This is true only for the two-particle
In [10], a similar technique was used to solve the drop-sector) The diffusion-rate for the two-particle sector is then
push mode[11], and a generalized one-parameter model incalculated, and is shown to be in agreement with the large-
terpolating between the totally ASEP and the drop-pusHime result of the discrete procegk?].
model. In this generalized process, the influence of exclusion
is controlled by a parametere[0,1], so that each particle Il. ONE-DIMENSIONAL ASYMMETRIC EXCLUSION
does not necessarily stop if its right neighboring sites are PROCESS ON CONTINUUM
occupied, but pushes these particles to the right with rates
depending on the number of these particles. That is, the fol- Consider the following master equation and boundary

lowing process: condition describing an asymmetric exclusion process:
d
&T:_/iw - wéjin’_j4/’ (1) EP(X]_!XZv CC 1XN 1t)
occur with the rate =R[P(X;—1Xp, ... XN:D)+P(X1,X—1, ... Xn:t)
1 +_NP(X11X2!!XN!t)]

LNV Y ALE @

+L[P(X;+1Xs, ... XN:t)

wherex=1—X\. The main idea of treating these problems is +P(Xy X+ 1, XNt

to substitute the way in which particles push each other by a 4o —=NP(Xq,Xo, . XD, 3)

suitable boundary condition, so that the master equation is

the same whether there are adjacent particles or n¢L2lp  and

the same technique was applied to a two-parameter family

process, which is a generalization of the process introduced ~ P(- -+ X% .. {)=AP(... xx+1, ... 1)

in [10]. In this process, beside the parametemwhich con- _ FuP(. o x—1X, ..., (4

trols the way particles push each other, another parameter is

introduced, which controls the difference of the single-where\ andu must satisfyn + u=1, to ensure the conser-

particle drift rates to the right or left. vation of probability, and we have normalized the parameters
Now, as at large times the probability distribution of find- R and L so thatR+L=1. The above master equation is

ing particles becomes smooth, one can substitute the masteritten for x;<x; . ;. The above master equation and bound-

equation for the probability by an equation on a continuousary condition describe a system where particles can push a
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collection ofn adjacent particles with rater, to the right, or ~ whereV is defined in Eq(9), and we have séAgeniy=1.
with rate LI, to the left, wherd, is the same as, intro-  Also, the singularities are removed through the prescription

duced in Eq.(2), with the roles of\ and w interchanged )
[12] S(pkipm)qs(pk—}_lelpm)v k<m1 (13)

NO.W consider a_probablhty funcUon varying SlOWIY W!th. to ensure that the conditional probability, forandy in the
X. This case, specially happens in large times. In this limit, hysical region, enjoys the proper(x:0[y;0)= 8(x—y)
one can consider the variabbesas continuous variables and physical region, enjoys e p p_ ] y:0) Y).
An interesting case is when=u=5. In this case, the

change the master equation and the boundary condition tglements of the scattering matrix are equal to one, and we
differential equations. One obtains g q '

have

iP(xt)z(L—R) > o P(xt)+l > |P(x,t) 1 2
at A1 T i M Prep(Xitlyi0)= 2 5 amme O (14)

(5
This is just the solution to the diffusion equation with the
boundary condition that the normal derivative of the function
(Ndi 41— )P =3 =0 6) on the boundary is equal to zero, the boundary condition
R arrived at fora = u.

and

The master equation can still be simplified. Using a Galilean
transformationx;—x; +vt, t—t, with v=R—L, one ob- IIl. TWO-PARTICLE SECTOR CONDITIONAL

tains PROBABILITY, AND THE DRIFT
AND DIFFUSION RATES

ip(xlt): EVZP(x,t), 7 ~ Inthe two-particle sector, one can perform the integration
ot 2 in Eqg. (12) to obtain

and the boundary condition does not change. What we have 1

obtained is that the drifting-pushing process introduced in P(x;tly;t)= — e~ [(x1—yD) %+ (- y2) %1/ (21)
[12], for smooth enough probabilities is equivalent to a con- 2t

tinuous diffusion process with a specific boundary condition.

. ; X ; —(2+2D)(2t)

Note that Eq.(7) holds only in the physical regiorx; +sin20e” 417 %2
<Xj+1.

The Bethe-ansatz solution to the master equdfipfwith \/; 2
the boundary conditiot6)] is +cos20\| -zje A /Y

P(x;t)=e5"W (x), 8 z;
X| —1+erfl — , 1
where \/EH (15)
vx)=3 A, x ©) where we have defined
Y Z1:=X1— Y2,

The summation runs over the elements of the permutation 2y
group andA,’s are to be determined through the boundary 2'=X27 Y1,
condition(6). Just as it was done 2], it is seen that

tan@:=\/pu, (16
E=—(E DJ-Z)/Z, 21:=2, COSO+ 2, siné,
j
(10 Zj:=—2, Sin G+ 2, cosH.

Ao’oi:S(o-(pi)!U(pi-%—l))Aa'!
To obtain the drift and diffusion rates, let us find the prob-
whereo is an arbitrary element of the permutation group andability density of finding two particles at a distangeWe
o; is that element which only interchangesandp;.,. Sis  have

an element of the scattering matrix in the two-particle sector: .

dx; P(Xo—X,X2;t]y1,Y2,0)

— o0

AP 1P, Pr(X:tIyl,yz;O):f

. 11
APj— mPx (19

Sik=S(p;j,Px) = — (17

From these, one can obtain the conditional probability as and, using Eq(12), we arrive at

av ) 1 )2 _ 2
P(x;tly;0)= J G V0P, (1) Pr(xitly,0)= e~ ¢~ e 6oy (1g)
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where we have definegl:=y,—y;. To proceed, we must

calculate the probability densities of finding the first and sec-

ond particles ak:
+ o
Pi(x)= j dx; P(X,X3) (19
X

and

P,(x)= f_xwdxl P(X1,X). (20

Starting from the master equati¢r), and the boundary con-
dition (6), the time evolutions foP; andP, can be written
as

Pi(X)= %azpl(xwr NIP(X,X) (21)
and
. 1
Py(x)= EﬁZPZ(X)—,LLaP(X,X). (22)
From these, we arrive at
d(r) d 3
gt Tai %) —(x0)) =P (0) (23
and
d(X d -\ -\ d{r
a2 a oy =" o= G
(24
So,
Mm—N\
(X)=(X)ot ——(r)=(ro)- (25)
The asymptotic behavid®, is, from Eq.(18),
1
P/ (x)= —+0(t"%?), (26)

Jat

from which we obtain
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(ry=C+2\t/m+0(t"1?),

2
<><>=<><>o+(u—x><<:+zm—<r>o>/2+0<t-1’2>.( !

HereC is a constant depending on the initial conditions. The
drift rate for large times is now easily obtained:

V:=lim w =0.

at (28

t—ow
The diffusion rate is

d(X®)—(X)») 1 d d
M:Ea«x{)ﬂx%})—a((xy)l (29

dt
where
2 1 2 2
(X2) =5 (G +x3). (30
Performing the calculations, one obtains
d((X?)—(X)? —\)?
X=X _ W=V Y
dt 2 Jat
e—yzl(4t)
—(r)— 31
(=) NE (3D)

Then, using the asymptotic behavior of the error function, it
is seen that

_d({(X®)=(X)?) o 1 1

A._tlir; T =1+(pu—N\) (2 Tr). (32

It is seen that the result®8) and (32) coincide with the
corresponding results dfl2]. These results also conicide
with those obtained ifi9]. To see this correspondence, how-
ever, one should note that 8], there is just one parameter,
namelyDg (which corresponds t&® and w both), and that

we have used a Galilean transformation to m&ke0.
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