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Asymmetric one-dimensional exclusion processes: A two-parameter exactly solvable example
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We consider a two-parameter family of asymmetric exclusion processes for particles living on a continuous
one-dimensional space. Using the Bethe ansatz, the exact solution to the master equation, and from that the
drift and the diffusion rate in the two particle sector, are obtained.@S1063-651X~99!09608-7#

PACS number~s!: 82.20.Mj, 02.50.Ga, 05.40.2a
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I. INTRODUCTION

In recent years, the asymmetric exclusion process and
problems related to it, including for example the kinetics
bipolymerization@1#, dynamical models of interface growt
@2#, traffic models@3#, the noisy Burgers equation@4#, and
the study of shocks@5,6#, have been extensively studied. Th
dynamical properties of this model have been studied
@6–8#. As the results obtained by approaches like mean fi
are not reliable in one dimension, it is very useful to intr
duce solvable models and analytic methods to extract e
physical results. Among these methods is the coordinate
the ansatz, which was used in@9# to derive conditional prob-
abilities for the asymmetric simple exclusion process~ASEP!
on a one-dimensional lattice.

In @10#, a similar technique was used to solve the dro
push model@11#, and a generalized one-parameter model
terpolating between the totally ASEP and the drop-pu
model. In this generalized process, the influence of exclus
is controlled by a parameterlP@0,1#, so that each particle
does not necessarily stop if its right neighboring sites
occupied, but pushes these particles to the right with ra
depending on the number of these particles. That is, the
lowing process:

~1!

occur with the rate

r n5
1

11~l/m!1•••1~l/m!n , ~2!

wherem512l. The main idea of treating these problems
to substitute the way in which particles push each other b
suitable boundary condition, so that the master equatio
the same whether there are adjacent particles or not. In@12#,
the same technique was applied to a two-parameter fa
process, which is a generalization of the process introdu
in @10#. In this process, beside the parameterl, which con-
trols the way particles push each other, another paramet
introduced, which controls the difference of the sing
particle drift rates to the right or left.

Now, as at large times the probability distribution of fin
ing particles becomes smooth, one can substitute the m
equation for the probability by an equation on a continuo
PRE 601063-651X/99/60~3!/3393~3!/$15.00
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space. In this way, one obtains a diffusion equation fr
which more compact results can be derived. So this proc
which is the continuous version of asymmetric exclusi
process, not only is important by itself, but also gives
correct large-time behaviors of discrete processes by sim
means.

The scheme of the present paper is the following. In S
II, the continuous model is introduced, and compared to
discrete version, and then the evolution matrix~or the con-
ditional probability! of the model is obtained using the Beth
ansatz.

In Sec. III the two-particle sector of the model is exte
sively studied. It is shown that the probability distribution
the distance between particles is independent of the two
rameters introduced.~This is true only for the two-particle
sector.! The diffusion-rate for the two-particle sector is the
calculated, and is shown to be in agreement with the lar
time result of the discrete process@12#.

II. ONE-DIMENSIONAL ASYMMETRIC EXCLUSION
PROCESS ON CONTINUUM

Consider the following master equation and bound
condition describing an asymmetric exclusion process:

]

]t
P~x1 ,x2 , . . . ,xN ;t !

5R@P~x121,x2 , . . . ,xN ;t !1P~x1 ,x221, . . . ,xN ;t !

1•••2NP~x1 ,x2 , . . . ,xN ;t !#

1L@P~x111,x2 , . . . ,xN ;t !

1P~x1 ,x211, . . . ,xN ;t !

1•••2NP~x1 ,x2 , . . . ,xN ;t !#, ~3!

and

P~ . . . ,x,x, . . . ;t !5lP~ . . . ,x,x11, . . . ;t !

1mP~ . . . ,x21,x, . . . ;t !, ~4!

wherel andm must satisfyl1m51, to ensure the conser
vation of probability, and we have normalized the paramet
R and L so that R1L51. The above master equation
written for xi,xi 11. The above master equation and boun
ary condition describe a system where particles can pus
3393 © 1999 The American Physical Society
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collection ofn adjacent particles with rateRrn to the right, or
with rate Ll n to the left, wherel n is the same asr n intro-
duced in Eq.~2!, with the roles ofl and m interchanged
@12#.

Now consider a probability function varying slowly wit
x. This case, specially happens in large times. In this lim
one can consider the variablesxi as continuous variables an
change the master equation and the boundary conditio
differential equations. One obtains

]

]t
P~x,t !5~L2R!S (

i
] i D P~x,t !1

1

2 S (
i

] i
2D P~x,t !,

~5!

and

~l] i 112m] i !Puxi 115xi
50. ~6!

The master equation can still be simplified. Using a Galile
transformation:xi→xi1vt, t→t, with v5R2L, one ob-
tains

]

]t
P~x,t !5

1

2
¹2P~x,t !, ~7!

and the boundary condition does not change. What we h
obtained is that the drifting-pushing process introduced
@12#, for smooth enough probabilities is equivalent to a co
tinuous diffusion process with a specific boundary conditi
Note that Eq. ~7! holds only in the physical regionxi
,xi 11.

The Bethe-ansatz solution to the master equation~7! @with
the boundary condition~6!# is

P~x;t !5eEtC~x!, ~8!

where

C~x!5(
s

Aseis(p)•x. ~9!

The summation runs over the elements of the permuta
group andAs’s are to be determined through the bounda
condition ~6!. Just as it was done in@12#, it is seen that

E52S (
j

pj
2DY2,

~10!
Ass i

5S„s~pi !,s~pi 11!…As ,

wheres is an arbitrary element of the permutation group a
s i is that element which only interchangespi andpi 11 . S is
an element of the scattering matrix in the two-particle sec

SjkªS~pj ,pk!52
lpk2mpj

lpj2mpk
. ~11!

From these, one can obtain the conditional probability as

P~x;tuy;0!5E dNp

~2p!N Cp~x!eE(p)t2 ip•y, ~12!
t,

to

n

ve
n
-
.

n

d

r:

whereC is defined in Eq.~9!, and we have setAidentity51.
Also, the singularities are removed through the prescript

S~pk ,pm!→S~pk1 i e,pm!, k,m, ~13!

to ensure that the conditional probability, forx andy in the
physical region, enjoys the propertyP(x;0uy;0)5d(x2y).

An interesting case is whenl5m5 1
2 . In this case, the

elements of the scattering matrix are equal to one, and
have

Pl5m~x;tuy;0!5(
s

1

~2pt !N/2e2„x2s(y)…2/(2t). ~14!

This is just the solution to the diffusion equation with th
boundary condition that the normal derivative of the functi
on the boundary is equal to zero, the boundary condit
arrived at forl5m.

III. TWO-PARTICLE SECTOR CONDITIONAL
PROBABILITY, AND THE DRIFT

AND DIFFUSION RATES

In the two-particle sector, one can perform the integrat
in Eq. ~12! to obtain

P~x;tuy;t !5
1

2pt H e2[(x12y1)21(x22y2)2]/(2t)

1sin 2ue2(z1
2
1z2

2)/(2t)

1cos 2uAp

2t
z18e

2z18
2/(2t)

3F211erfS z28

A2t
D G J , ~15!

where we have defined

z1ªx12y2 ,

z2ªx22y1 ,

tanuªl/m, ~16!

z18ªz1 cosu1z2 sinu,

z28ª2z1 sinu1z2 cosu.

To obtain the drift and diffusion rates, let us find the pro
ability density of finding two particles at a distancex. We
have

Pr~x;tuy1 ,y2 ;0!ªE
2`

1`

dx2 P~x22x,x2 ;tuy1 ,y2,0!

~17!

and, using Eq.~12!, we arrive at

Pr~x;tuy,0!5
1

A4pt
$e2(x2y)2/4t1e2(x1y)2/4t%, ~18!
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where we have definedyªy22y1. To proceed, we mus
calculate the probability densities of finding the first and s
ond particles atx:

P1~x!5E
x

1`

dx2 P~x,x2! ~19!

and

P2~x!5E
2`

x

dx1 P~x1 ,x!. ~20!

Starting from the master equation~7!, and the boundary con
dition ~6!, the time evolutions forP1 andP2 can be written
as

Ṗ1~x!5
1

2
]2P1~x!1l]P~x,x! ~21!

and

Ṗ2~x!5
1

2
]2P2~x!2m]P~x,x!. ~22!

From these, we arrive at

d^r &
dt

ª

d

dt
~^x2&2^x1&!5Pr~0! ~23!

and

d^X&
dt

ª

1

2

d

dt
~^x2&1^x1&!5

m2l

2
Pr~0!5

m2l

2

d^r &
dt

.

~24!

So,

^X&5^X&01
m2l

2
~^r &2^r &0!. ~25!

The asymptotic behaviorPr is, from Eq.~18!,

Pr~x!5
1

Apt
1O~ t23/2!, ~26!

from which we obtain
rs

n-

er

ld
-
^r &5C12At/p1O~ t21/2!,

~27!
^X&5^X&01~m2l!~C12At/p2^r &0!/21O~ t21/2!.

HereC is a constant depending on the initial conditions. T
drift rate for large times is now easily obtained:

Vª lim
t→`

d^X&
dt

50. ~28!

The diffusion rate is

d~^X2&2^X&2!

dt
5

1

2

d

dt
~^x1

2&1^x2
2&!2

d

dt
~^X&2!, ~29!

where

^X2&ª
1

2
^x1

21x2
2&. ~30!

Performing the calculations, one obtains

d~^X2&2^X&2!

dt
511

~m2l!2

2 F12erfS y

A4t
D

2~^r &2y!
e2y2/(4t)

Apt
G . ~31!

Then, using the asymptotic behavior of the error function
is seen that

Dª lim
t→`

d~^X2&2^X&2!

dt
511~m2l!2S 1

2
2

1

p D . ~32!

It is seen that the results~28! and ~32! coincide with the
corresponding results of@12#. These results also conicid
with those obtained in@9#. To see this correspondence, how
ever, one should note that in@9#, there is just one paramete
namelyDR ~which corresponds toR and m both!, and that
we have used a Galilean transformation to makeV50.
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